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A theory and simulation code are developed to study non-steady sources as means to 
control sonic booms of supersonic aircraft. A key result is that the source of sonic 
boom pressure is not confined to the length of the aircraft but occupies an extensive 
segment of the flight path. An aircraft in non-steady flight functions as a synthetic 
aperture antenna, generating complex acoustic waves with no simple relation to 
instantaneous volume or lift distributions. 

The theory applies linear acoustics to slender non-steady sources but requires no far- 
field approximation. The solution for pressure contains a term not seen in Whitham’s 
theory for sonic booms of distant supersonic aircraft. The term describes a pressure 
field that decays algebraically behind the Mach cone and, in the case of steady flight, 
integrates to a ground load equal to the weight of the aircraft. The algebraic term is 
separate from those that describe the sonic boom. 

Two non-steady source phenomena are evaluated : periodic velocity changes (surge), 
and periodic longitudinal lift redistribution (slosh). Surge can attenuate a sonic boom 
and covert it into prolonged weak reverberation, but accelerations needed to produce 
the phenomenon seem too large for practical use. Slosh may be practical and can alter 
sonic booms but does not, on average, result in boom attenuation. The conclusion is 
that active sonic boom abatement is possible in theory but maybe not practical. 

1. Introduction 
This is a study of sonic booms produced by aircraft in non-steady flight. Our goal 

was to find whether non-steady source phenomena can scramble or attenuate sonic 
booms heard by listeners on the ground. Such source phenomena would constitute 
active sonic boom control, similar to the active methods recently developed to control 
sound in enclosures. 

A freely propagating sonic boom is very different than sound in an enclosure. Active 
sound control methods work best on sound fields in small enclosures or on sources near 
resonance, but neither condition applies to sonic booms. Active sonic boom control 
must somehow prevent the pressure waves generated by a supersonic aircraft from 
coalescing into compact and coherent waves at large distances. The control method 
must work for listeners located anywhere on the ground. A method that reduces sound 
at specific locations but increases it elsewhere could not be considered successful. 

Pioneers of sonic boom theory were Landau (1 945), Hayes (1954), and Whitham 
(1956). They developed a model of sonic booms that has guided thinking for forty 
years and has produced many accurate predictions. Figure l(a) illustrates a few 
aspects of that model. An aircraft flying at a steady supersonic speed produces local 
flow perturbations, which can be treated by linear compressible flow theory if the 
perturbations are not too large. The perturbations evolve outward from the flight path 
on Mach cones, the characteristic surfaces of the underlying compressible flow 
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FIGURE 1. (a)  Sonic boom below an aircraft in steady supersonic flight. The Mach cones signify 
mathematical but not physical causality. (b) Ray model of a sonic boom source. Ray theory handles 
boom propagation phenomena well, but the phantom aircraft is not a valid source concept. 

equations. Linear theory implies that the Mach cones all incline at the same angle, but 
weak nonlinearities cause the cones to coalesce where pressure increases with distance 
back along the flight path. The coalesced cones form shock waves, and the shocks 
absorb more Mach cones until only a simple N-shaped pressure wave remains far from 
the flight path. 

The model of Landau, Hayes, and Whitham has guided thinking about sonic booms 
for the past forty years. The model implies that sonic booms are likely to be robust, and 
indeed they are. The processes depicted in figure 1 (a)  seem inexorable. Each Mach cone 
seems able to convey information about the local shape of the aircraft outward and 
downward to the hapless listeners on the ground. 

Yet there is a subtle loophole in the classical model of sonic booms. Landau 
developed the original theory of weakly converging characteristics in the context of 
signalling problems, where the characteristics really are trajectories of information 
flow. An example might be an oscillating point source, radiating spherical sound 
waves. Characteristics can be plotted as lines in coordinates of radius and time, and 
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each characteristic can convey a message about the source until both characteristic and 
message are absorbed in a shock. 

The characteristic cones of figure l(a) are not characteristic surfaces of the 
compressible flow equations in three dimensions plus time and are not paths of 
information flow. They are mathematical conveniences resulting from the assumption 
that the aircraft is flying steadily, The aircraft in figure 1 (a) could have ceased to exist, 
and the N-wave would arrive at the indicated location as though nothing had changed 
(sounds of disintegration would come later). The sonic boom was created somewhere 
back along the flight path and reflects flight conditions during some epoch before the 
instant depicted in the figure. 

So where and when was the sonic boom created? A plausible answer involves ray 
paths, as seen in figure 1 (b). Ray paths are orthogonal to Mach cones and are lines 
along which acoustic energy propagates. Perhaps the boom heard at a point on the 
ground propagated down a ray path that originated on the flight path of the aircraft. 
The source of the boom was the aircraft at an earlier time, an acoustic image shown 
as a dashed outline in the figure. 

Ray theory, or geometrical acoustics, has played an important role in the study of 
sonic boom propagation. Most sonic boom prediction codes have combined Whitham’s 
theory of weakly nonlinear wave propagation with ray tracing to account for 
manoeuvres and atmospheric refraction (Hayes, Haefeli & Kulsrud 1968). Despite its 
success with propagation phenomena, however, ray theory cannot provide a 
satisfactory account of the origin of sonic booms. Ray theory is based on a short-wave 
approximation that fails wherever the acoustic wavelength is comparable to the scale 
for changes of pressure amplitude. Precisely such conditions prevail close to an aircraft, 
so the rays cannot be used to follow a sonic boom to its source. 

The phantom aircraft of figure l ( b )  is not the source of the sonic boom. The real 
source is more like a motion picture segment of the phantom aircraft and occupies a 
region extended in space and time, usually much longer than the aircraft itself. The 
extended source can be made to function as a synthetic aperture wave generator, which 
is why active sonic boom control is worth considering. 

An aircraft can be an active acoustic source in two ways: by manoeuvring or by 
changing shape. Elegant theories have been developed for the effects of large-scale 
manoeuvres, with emphasis on the formation of ‘super booms’ where shock waves fold 
into caustics (Seebass 1970). Those theories involve four modelling stages : linear 
steady compressible aerodynamics near the source, weakly nonlinear wave propa- 
gation, ray theory to locate caustics, and nonlinear transonic flow theory to handle the 
caustics themselves. Those theories may have some bearing on active control by 
manoeuvres, but effective active control manoeuvres take place at frequencies too high 
for steady aerodynamics and ray tracing to apply. 

Garrick & Maglieri (1968) conducted flight tests that have a bearing on the 
possibility of active sonic boom control. Figure 2 is reproduced from their report to 
illustrate the test conditions. The aircraft was an F106 flying at Mach 1.5 and an 
altitude of 35000 ft. The pilot subjected the aircraft to a sinusoidal porpoising 
manoeuvre at a frequency of 1 Hz, with vertical accelerations of & 0.5 g. Aerodynamic 
lift must have varied from 0.5 to 1.5 times the weight of the aircraft, so the source 
strength for the component of sonic boom due to lift varied by a factor of 3.0. Garrick 
& Maglieri expected the sinusoidal source variation to ‘print through’ to the ground, 
producing a sinusoidal boom strength variation with a wavelength around 1500 ft. 
Notice that the figure shows both characteristics and rays, presumably path options 
along which the source variations might propagate to the ground. 
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FIGURE 2. Schematic of test arrangements for evaluating the effects of aircraft motion on 
sonic-boom pressure signatures on the ground (from Garrick & Maglieri 1968). 

When the records from the ground-based microphones were processed, they revealed 
no periodicity whatever near a wavelength of 1500 ft. Instead the wave forms were 
about as would have been expected for steady flight, with some random variations 
attributable to atmospheric turbulence (Crow 1969). 

The results were a real puzzle at the time, but the theory developed in this paper 
explains them easily. The sonic boom recorded at any point on the ground did not 
originate from a single location in the sky, but rather from an interval of several 
thousand feet along the flight path. Each boom was an average over several cycles of 
the porpoising manoeuvre. 

The relation between an actively controlled source and a sonic boom on the ground 
can be more complicated than a simple average. Even the simple case of a point source 
moving steadily and oscillating sinusoidally produces a complex wave form with a 
spectrum of Doppler-shifted frequencies (Goldstein 1976 j. The acoustic signature of an 
aircraft with active sonic boom control will be more complex still. 

2. Formulation 
Our study of active sonic boom control is based on slender-body theory and linear 

acoustics. Nonlinear shock formation and propagation may be important, but linear 
acoustics should provide a useful first look at prospects for active control. 

The coordinates for the theory are time t and the three dimensions of space, 

x = (x, y ,  4, (2.1) 

fixed with respect to the atmosphere far from the aircraft. The aircraft flies along the 
x-axis in the direction of decreasing x. The z-axis points upward, and the y-axis points 
along the starboard wing. The origin of time is chosen so that the aircraft nose 
intercepts the origin of coordinates at time zero. 

Pressure is the sum of ambient pressure po  and a perturbation p ,  
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and density is expressed in similar form: 

Po + P ( X ~  t)-  (2.3) 
The ambient pressure p ,  and density p, are defined at the altitude of the flight path, 
while p and p are perturbation pressure and density in our notation. The flow velocity 
u(x,  t )  is measured relative to the atmosphere far from the aircraft. 

Three equations set forth the principles of linear acoustics. They are conservation of 
mass, 

conservation of momentum, 
all 

at 
p"-+vP =f, 

and the equation of state for isentropic compression, 

p = c;p.  

The scalar source on the right of (2.4) represents a distributed volume flow of fluid of 
ambient density, while the vector source on the right of (2.5) is a distributed body force 
imposed on unit volumes of fluid. The quantity c, in (2.6) is the ambient speed of 
sound, The distributed sources are used to represent the passage of the aircraft. 

The three equations can be combined into an equation for a single scalar variable, 
either the pressure perturbation or a velocity potential. To obtain an equation for the 
pressure perturbation, we differentiate (2.4) with respect to time, take the divergence 
of (2.5), and use (2.6) to eliminate density in favour of pressure. The result is a wave 
equation for pressure with source terms on the right: 

That equation, with the addition of a nonlinear quadrupole source term, is the basis for 
the famous theory of aerodynamic sound (Lighthill 1953). 

A second and complementary wave equation can be derived by introducing the 
concept of a distributed body impuIse i, defined by the ordinary differential equation 

f = %/at .  (2.8) 
A velocity potential q5 is defined so that 

1 u = -+vq5. 
Po 

Impulse is not used much in acoustics but does play a role in classical hydrodynamics 
(Lamb 1933). In the context of linear acoustics, impulse is simply the integral of body 
force over all past times. Notice from (2.9) that the velocity field is not entirely 
potential, but includes a rotational component equal to the ratio of body impulse over 
density. The rotational component would include trailing vortices laid down by a 
travelling impulse. 

An equation for velocity potential follows a derivation similar to that for pressure. 
We combine (2.5) and (2.9) to show that 

(2.10) 
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and the term in brackets is zero if the pressure perturbation and velocity potential 
decay to zero at infinity. We combine that result with (2.4), (2.6), and (2.8) to obtain 
a wave equation for velocity potential: 

(2.11) 

Equation (2.11) is useful for calculations of velocity components and wave drag. 
The rest of the study is based on solutions of wave equations (2.7) and (2.11). The 

initial conditions are that the flow was zero in the distant past, and the boundary 
conditions are that the flow remains zero far from the origin. The source field q and 
force field f then determine the flow uniquely. 

To define the source and force fields, we assume that the aircraft is a slender body 
such that q and fare  concentrated along the x-axis. Slender-body approximations do 
involve some loss of generality but are consistent with the nature of our study as a first 
look at active sonic boom control. The essence of slender-body theory is that the 
sources and forces are delta functions of y and z times functions of x and t that 
represent the fuselage and wings of the aircraft. The source has the form 

where (2.12) 

(2.13) 

and 9 ( x ,  t )  is the area of the fuselage cross-section. Equation (2.13) implies that source 
strength is proportional to the local pulsation rate of the fuselage, an intuitively 
appealing result, but one that requires some care to prove (Cole 1953). 

We assume that the force and impulse vectors are due mainly to lift and are directed 

(2.14) along the z-axis. Thus 

and 
i = S ( Y )  S(4 t> e,, (2.15) 

with 
9 = a y p .  (2.16) 

Once the aircraft has passed, 3 no longer changes with time and has a residual value 
equal to the impulse of the vortex wake. 9 is related to the distribution of lift 2 along 
the aircraft. If a planar wing is responsible for all lift, then the force on the air is equal 
and opposite the lift on the wing: 

F ( x ,  t )  = -2(x, t) ,  planar wing. (2.17) 
We have to be careful about lifting wings or fuselages with non-zero volumes. 9 
models forces on an infinite volume of fluid with no internal boundary, including 
fictional fluid within the fuselage. 9 has to accelerate the fictional fluid along with real 
fluid around the aircraft. For a body of revolution, the inertias of the fluid inside and 
outside are the same, and 

9 ( x ,  t )  = - 22(x,  t ) ,  body of revolution. (2.18) 
The analyses of this paper use (2.17) except for $7, which compares the pressure derived 
from non-steady theory with the classical theory for steady flow over an inclined body 
of revolution (Tsien 1938). 

The formulation of the non-steady sonic boom theory is complete. Equations (2.7) 
and (2.11) are to be solved subject to zero initial and boundary conditions at infinity 
and to the body force and source fields of (2.12) and (2.14). Aircraft speed and Mach 

f =  S(Y) %z) 9(& t> e,, 
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number play no roles in the formulation but appear in specific selections of 2(x, t )  and 
F ( x ,  t ) .  Fundamentally, the theory applies whether the aircraft is flying at subsonic or 
supersonic speed. 

3. Pressure and velocity 
Equations (2.7) and (2.1 1) are linear non-dispersive wave equations with 

inhomogeneous terms on the right. The simplest version is (2.11) with no body impulse, 
a wave equation for velocity potential driven by a scalar source field. The solution is 
a volume integral over all the sources, 

where R is the distance between a source location x’ and the point x where 4 is 
evaluated, 

and t’ is a retarded time, 

Solution of wave equation (2.7) for pressure follows by differentiating and superposing 
terms of the form (3.1): 

R = Ix-x’J, (3 .2)  

t’ = t -  Rlc,. (3 .3)  

The integrals are performed over the three dimensions of space, but they simplify 
greatly when the slender-body approximations for q and f a r e  used. From (2.12) to 
(2.141, 

The divergence of the second term on the right simplifies to a derivative on z, because 
the body force f has a z-component only. 

The final step in the solution for pressure is to bring the derivative a/az into the 
second volume integral. The variable z occurs in R and also in the retarded time t’, 
which depends on R through (3.3). Thus 

The pressure wave forms presented in this paper are based on (3.6). We could compute 
pressure at any point and time ( x ,  t )  but have generally assumed that the listener is 
located a distance h below the flight path, directly under the origin of coordinates. Thus 

and 
x = O  y = O ,  z = - h ,  

R = (x” + h2)l”. 

At location (3.7), pressure is a function of time: 
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The area and force distributions Y and F remain functions of (x’, t’) in the integrands 
of (3.6). 

When the altitude h is more than a few thousand feet, the ambient density po 
increases substantially from the flight path at z = 0 at the ground at z = -h. The 
energy flux of a propagating wave tends to be conserved and is proportional to p 2 / p o ,  
so the pressure amplitude increases as the square-root of ambient density as the wave 
propagates to the ground. A second phenomenon that alters a pressure wave is ground 
reflection, which doubles the amplitude when the ground is firm and smooth. The 
amplification factor 

2t PO(O)/PO( - 41”2 (3.10) 

allows for both phenomena and has been included in all the pressure signatures 
presented here. If pressures computed by (3.6) were not multiplied by (3.10), they 
would appear small to those familiar with measurements of sonic booms on the 
ground. 

Solution of wave equation (2.1 1) for velocity potential follows much the same line 
as the solution of (2.7) for pressure perturbation. The fundamental solution (3.1) and 
some differentiation and superposition produce the formula 

O0 Wdx’  z [ B 91 dx’ 
-,at147cR p, --ol c,R R2 47cR 

+-j - -+- - (3.1 1) 

analogous to (3.6) for pressure. The potential q5 is a function of (x, t), while the source 
terms 9, F, and 9 in the integrals are functions of (x’, t’). 

Velocity is the gradient of (3.11) plus an impulse vector, as seen in (2.9). We have 
used velocity only to compare formulae for velocity components and wave drag with 
classical formulae of steady flight. Two velocity components are important for the 
comparisons : the axial component u along the x-axis, and a radial component v normal 
to the x-axis. To facilitate calculation of the radial component, a change of coordinates 
from rectangular (x, y ,  z )  to cylindrical (x, r, 0) is appropriate, with the substitutions 

y = rcos8, z = rsin8, (3.12) 

on the right of (3.11). The distance between the source and listener takes the form 

R = [(x - x ’ ) ~  + r2]1/2, (3.13) 

and the desired velocity components follow from (2.9): 

(3.14a, b) 

The derivatives in (3.14) can be evaluated in a straightforward way from (3.1 I), and 
the orders of differentiation and integration exchanged to produce computable 
formulae for velocity components in non-steady flight. The results, however, are hard 
to compare with established formulae for the velocity components around a supersonic 
aircraft (Whitham 1974, p. 225). The reasons are not fundamental, but have to do with 
the fact that ‘judicious integration by parts is used to avoid divergent integrals’ in the 
steady theory (Whitham 1974, p. 221). Parallel judicious integrations are needed to 
match the outcomes of (3.14) with Whitham’s steady-state theory. 
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To evaluate (3.14a), we recognize that the integrands of (3.11) have the form 
X(x’ ,  x - x’, r ,  t) ,  (3.15) 

where x’ appears explicitly and also in the combination (x-x’) through (3.13). Thus 

ax ax d.x -=--- 
3x ax’ dx” 

(3.16) 

tU?’/ax is a partial derivative that needs to be evaluated for the axial component of 
velocity u, and dX/dx’ is a total derivative that allows for all dependencies on x’ with 
x, r and t held fixed. An integration by parts can be performed on the term involving 
dx ldx’ ,  with the result that 

(3.17) 

Evaluation of the radial component of velocity requires several tricks similar in flavour 
to (3.16), with the result that 

Equations (3.17) and (3.18) are easy to integrate numerically and easy to compare with 
Whitham’s theory of steady supersonic flow about slender axisymmetric bodies. 

4. Domain of dependence 
The integrals in solution (3.6) for pressure and the corresponding solutions (3.17) 

and (3.18) for velocity range over all values of x’ from negative to positive infinity. To 
compute the integrals numerically, we need to put limits on the domain of integration. 
Selecting those limits takes us back to the question posed in the introduction: where 
and when was the sonic boom created? 

In the usual acoustics terminology, the sources depend on the dummy variable of 
integration x’ and the retarded time t’. We prefer more dignified names from relativity 
theory, where x’ is the proper location of a source, and t’ is proper time. From the 
vantage of the source, x’ and t‘ are the variables that really matter. The fact that a 
source at proper location and time (x’, 0, 0, t’) happens to be heard at (0, 0, - h, t )  is no 
concern of the source ! 

Figure 3 ( a )  shows an aircraft cutting a swath through the plane of proper 
coordinates (x’, t’). The aircraft speed is assumed constant, so its nose traces a straight 
line through the origin, and its tail traces a parallel line shifted an aircraft length in the 
x’-direction. The aircraft can generate sound only from a zone ofsources between the 
two lines. Not all of the zone of sources can contribute to the sound at a specific 
location and time below the flight path. Equation (3.3) imposes a functional relation 
between the proper location x’ and time t‘ of the source. The shape of the function t’(x’) 
happens to be a hyperbola, which we call the hyperbola of dependence. 

Figure 3(b) illustrates the zone of sources and hyperbola of dependence under 
conditions when the two overlap. Only sources along the segment of the hyperbola 
within the zone of sources can contribute to sound heard under those conditions. That 
segment of the hyperbola of dependence answers the question of where and when the 
sonic boom arose. 
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FIGURE 3. (a) Zone of sources in proper coordinates (x’, t’). The aircraft creates flow perturbations 
only within the zone of sources. (b) Hyperbola of dependence in proper coordinates (x’, t’). Only 
sources along the segment of the hyperbola within the zone of sources contribute to sound at the 
listener position and time (0, 0, -h, 2). (c) Upward migration of the hyperbola of dependence with 
increasing time t. 
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The nature of the overlap between the hyperbola of dependence and zone of sources 
depends on aircraft altitude and Mach number and on listener time t. The slope of the 
lines bounding the zone of sources is - I/U, where U is the speed of the aircraft. The 
asymptotes of the hyperbola of dependence have slopes k l/co, where c,, is the speed 
of sound. The ratio of the two slopes is the Mach number, 

M = u /co .  (4.1) 
When M < 1, the zone of sources has a steeper slope than the asymptotes of the 

hyperbola of dependence. The two always overlap, and they overlap in one segment 
only. The physical consequence is that the listener always hears a subsonic aircraft, and 
the acoustic image of the aircraft occupies a single segment of sky. The acoustic image 
does not coincide with the current location of the aircraft and may be highly elongated. 

When M > 1, the case shown in the figure, the hyperbola of dependence may overlap 
the zone of sources not at all, once, or twice, depending on aircraft altitude h and 
listener time t .  Equation (3.3) implies that the hyperbola t’(x’) rises along the t’-axis 
with advancing t ,  as shown in figure 3(c). No overlap occurs at early times, a single 
segment of overlap occurs at intermediate times, and two segments of overlap occur 
later. The physical consequences for the supersonic case are that the listener hears 
nothing for awhile, then hears sources from an elongated but continuous segment of 
sky, and finally hears sources from two elongated segments of sky, which separate with 
time. 

The path of the aircraft nose in the (x’ t’) plot satisfies the equation 

t‘ = - X I /  u, (4.2) 

(4.3) 

while (3.3) provides the path of the hyperbola of dependence: 

The two equations are satisfied simultaneously where the hyperbola of dependence 
intersects the path of the nose, which is the lower boundary of the zone of sources. 
Equations (4.2) and (4.3) can be combined into a quadratic equation for x’, which has 
one real solution for M < 0. For M > 0, the quadratic has no real solutions when t is 
less than the time 

(4.4) 
when sound first reaches the listener from the nose of the aircraft. When t > t,,,,, the 
quadratic has two solutions 

t’ = t - (x’2 + h2)1’2/Co. 

t,,,, = (W - I)’”h/U 

, Ut T MU(t2- t;ose)lJ2 

W-1 x1,4 = (4.5) 

and those are the outer limits of the integrals that need to be performed to compute 
pressure and velocity from (3.6), (3.17), and (3.18). 

Further contraction of the limits of integration can be achieved when the listener 

where L is the length of the aircraft. Equation (4.6) gives the time when sound from 
the tail of the aircraft first reaches the listener. The equation for the path of the aircraft 
tail in the (x’, t’) plot is 

t‘ = ( L  - x’)/ u, (4.7) 
which replaces (4.2) in the simultaneous solution with (4.3). Two real solutions are 
found when t > ttail, namely 

, (Ut - L) T MLq( t - L/ v ) Z  - t;ose]l’2 
W-1 x 2 , 3  = , 
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36 

( x 1000) 

32 

x ' ( f t )  28 

24 

43.2 43.3 43.4 43.5 43.6 

t (s) 
FIGURE 4. Domain of dependence for a sonic boom under conditions (4.1 1). Events between the 

two curves can influence the sonic boom heard by a listener on the ground. 

which mark the intersections of the hyperbola of dependence with the upper boundary 
of the zone of sources. 

The prescription for evaluating the solution integrals for supersonic flight is as 
follows. When t < t,,,,, no sound has reached the listener. When t,,,, < t < ttail, the 
integrations are performed over the interval 

Finally, when t > ttail, the integrations are performed over two intervals, 
(4.10) 

The limits of integration depend on sound speed, aircraft speed, aircraft length, aircraft 
altitude, and listener time. Figure 4 is a plot of the limits as functions of listener time 
for c,, = 1000 ft S-', U = 2000 ft S-', h = 50000 ft, L = 400 ft. (4.1 1) 
The two curves in the plot are xi,4 and double-valued functions of the listener 
time t. The region between the two curves is the comprehensive domain of dependence 
for the sonic boom heard by the listener. 

The main lesson of figure 4 is that the domain of dependence extends over proper 
distances much larger than the aircraft. At t = 43.4 s, for example, the sonic boom 
amplitude encompasses events that occurred over 8000 ft of sky. At t = 43.6 s, the 
listener hears sound from two segments of sky, each about 3000 ft long, separated a 
distance of about 8000 ft. Typical dimensions of the domain of dependence greatly 
exceed the length of the aircraft. 

x; < XI < xi. (4.9) 

x; d x' < xi, x; d x' d xi. 

5.  Lift and drag 
An enduring problem of sonic boom theory has been to explain how pressure 

transfers the weight of a supersonic aircraft to the ground. Equation (2.5) can be cast 
into integral momentum form, leaving no doubt that the integral of pressure over a 
rigid ground plane must equal the weight of the aircraft in steady flight regardless of 
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Mach number. In a memorable section of their monograph on applied aerodynamics, 
Prandtl & Tietjens (1934) derived the asymptotic form of ground pressure below a low- 
speed aircraft and showed that the pressure integrates to the weight of the aircraft. Yet 
an N-wave has equal positive and negative pressure lobes, so how can it support the 
weight of an aircraft? The answer can be found in the non-steady pressure solution 
(3.6). 

The integral of the pressure perturbation over any horizontal plane is a force 

which becomes a triple integral when (3.6) is put in place of pressure. Since the integrals 
all extend from - 00 to co, the order of integration does not matter, and we can replace 
the variables x and y with polar coordinates centred on x’. The angular integral can be 
performed at once, leaving integrals over x’ and the polar radius 

Thus 

where 
and 

a = [(x - x’)Z + y2]l’Z . 

R = (a2 + z2)’12, 
t’ = t -  Rlc,. 

The sources 9’ and F still depend on (x’, t’), but R and t‘ no longer depend on x’. The 
integrals over x’ can be performed independently of the integral over a. Define the total 
aircraft volume at time t’, 

(5.6) 
and total lift 

L(t’) = - F(x’, t’) dx’ (5.7) s: 
for a planar lifting surface (cf. equation (2.17)). The force on the horizontal plane 
assumes a simpler form 

coR zL1ada RZ 2R’ 
d2V zdL/dt‘ 

P o p - - - -  __ 

with only a single integral remaining. The first and second terms are zero in steady 
flight, and the third can be integrated explicitly: 

Equation (5.9) implies that pressure force on a plane below the aircraft (sgn (2) 

negative) is half the total lift, as expected. The other half is suction above the aircraft. 
If there is a ground plane at some z below the aircraft, then the pressure doubles there. 
The ground bears the full lift, and a reflected pressure field cancels the suction above. 

The term responsible for steady lift in (5.8) derives from the term involving F I R 2  
in the integrands of the pressure solution (3.6). That term differs structurally from the 
other two, which fall away with distance as 1/R. Those two terms represent acoustic 
waves and are fully responsible for the N-wave. The term involving F I R 2  is weaker but 
more extensive at large distances, extensive enough to account for the weight of the 
aircraft. 

Wave drag presents some interesting conceptual issues for non-steady flight. Should 
virtual mass effects be included in drag calculations, for example? Certainly virtual 
mass phenomena contribute forces in non-steady flight, but they should average to zero 
when the non-steady control measures are periodic. What about acoustic power 

F(z) = -sgn ( z )  L/2. (5.9) 
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radiated from a non-steady subsonic aircraft? We may not think of such radiation as 
wave drag, but the power must come from somewhere and detract from power 
available to propel the aircraft. 

A clean way to resolve such issues is to define a power-equivalent wave drag on 
the basis of the acoustic energy equation. To derive an energy equation from 
(2.4)-(2.6), we form the scalar product of (2.4) and u, multiply (2.5) by p / p o ,  eliminate 
p through (2.6), and sum the results: 

- ( ' -+A)+O.(pu)  a P IUl2 = u.f+pq.  
at 2 2p,c0 (5.10) 

The right-hand side of (5.10) is power input per unit volume, and the left is the sum 
of the rate of change of energy per unit volume plus the divergence of power flux. 
Power delivered to the flow is a volume integral of the right-hand side, 

(5.1 1) 

and a power-equivalent wave drag D can be defined as P/ U. By averaging the drag over 
a control cycle, we can show from (5.10) that 

(5.12) 

where the surface integral extends over an infinite cylinder those axis is the flight path, 
and 0 is the radial component of velocity given by (3.18). Use of a cylinder surrounding 
the flight path as a surface of integration avoids the power imparted to trailing vortices, 
which is infinite in slender-body theory. 

6. Steady source examples 
Once the limits of integration are understood, the pressure perturbation (3.6) is easy 

to evaluate by numerical integration. We have developed several codes to explore 
features of the pressure perturbation, all using Simpson's rule to integrate between the 
limits (4.9) and (4.10). The formulation is non-steady, but the codes apply just as well 
to steady flight. This section provides two examples. 

Figure 5 illustrates the first example, an aircraft with a parabolic fuselage and delta 
wing. The fuselage and wing are assumed for simplicity to have the same length. The 
wing is assumed to be flat, so the lift distribution has the triangular form shown in the 
lower part of the figure. The triangular lift distribution derives from slender-body 
theory. 

A steady source or lift distribution depends on the proper variables x' and t' only in 
the combination 

We introduce a boxcar function 
x' = x' + Ut'. 

1, O G x ' G L  
0, otherwise 

B(X') = 

to account for the fact that the source and lift distributions are non-zero only over the 
length of the aircraft. The formula for the area distribution of a parabolic fuselage is 
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FIGURE 5.  Aircraft with a parabolic fuselage and a delta wing. 
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FIGURE 6. Sonic-boom wave forms for a supersonic transport with a parabolic fuselage and delta 

wing. Volume and lift contributions are shown separately, along with their sum. 

where R,,, is the maximum fuselage radius. The lift distribution of a delta wing has 
the form 

(6.4) 
2 wx U ( Y )  = - F(X) = B ( X )  - 

L2 ' 

where W is the weight of the aircraft. The pressure solution (3.6) involves 9- and its 
first time derivative, as well as the second time derivative of Y .  Because of the cusped 
shape of the area distribution, the derivatives of the boxcar function contribute nothing 
to the second derivative of (6.3), but the first derivative of (6.4) produces a delta- 
function singularity at X' = L, which needs special treatment during numerical 
integration. 

Figure 6 shows sonic-boom wave forms computed from (3.6) times the amplification 
factor (3.10) to correct for density altitude and ground reflection. Flight conditions 
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X' 

FIGURE 7. Aircraft with a half-sine fuselage and a quarter-sine wing. 

include equations (4.11) plus a radius and weight appropriate for a supersonic 
transport : 

R,,, = 10 ft, W = 600000 lb. 
The thin curves in figure 6 depict pressure wave forms due to volume and lift, while the 
thicker curve is the total pressure perturbation. The maximum overpressure, about 
2 p.s.f., is typical for sonic booms from large aircraft. The theory does not account for 
nonlinear propagation phenomena, so the sonic boom has only a vague resemblance 
to an N-wave. 

Wave forms similar to those of figure 6 can be found in past work on steady 
supersonic flows. A plot of the pressure wave from a parabolic fuselage, for example, 
appears on page 92 of a monograph on aerodynamic theory by Lighthill (1960). The 
agreement of figure 6 with steady-state analyses helps validate our computational 
methods. 

Our second steady example has a fuselage shaped as a half sine wave and a quarter- 
wave wing. When the wing is flat, slender-body theory implies that the lift 
distribution is a half sine wave, as seen in figure 7. The fuselage area and lift 
distributions have the forms 

Lift is symmetric around the midpoint of the wing and tapers to zero at both the apex 
and trailing edge. The time derivative of (6.7) produces no delta function, and no 
allowance need be made for a singularity at the trailing edge when performing the 
integrals of (3.6). 

Figures 8 (a)  and 8 (b) show pressure waves and their sources for the second steady 
example. Flight conditions are those of (4.11) and (6.4). The pressure wave due to 
volume is about the same as seen in figure 6, as is maximum overpressure. The wave 
form due to lift is smoother around the time waves first arrive from the trailing edge 
of the wing because of the absence of a lift discontinuity. 

Figures 8(a)  and 8(b) are a complete picture of the amplitude and origin of a sonic 
boom. The two figures have the same horizontal axis, listener time t. At any t ,  the sonic 
boom amplitude of figure 8 (a) is an integral of sources along the x'-axis of figure 8 (b). 
The grey levels of figure 8(b) indicate the sum of the three integrands in the pressure 
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FIGURE 8. (a) Sonic boom of a supersonic transport with a half-sine fuselage and a quarter-sine wing. 
(b) Source distribution for the sonic boom of (a). The domain of dependence is the same as seen in 
figure 4. 

solution (3.6). The region with the largest positive sources is black, intermediate 
positive sources are dark grey, sources near zero are light grey, and negative sources 
are white. Because the sources are so extensive, their actual values are small. The 
largest source in the domain of dependence is 0.000 34 p.s.f. ft-', and the most negative 
is -0.00022 p.s.f. ft-l. When integrated over proper distances of 8000 ft, those 
sources are fully capable of producing the sonic boom amplitudes shown in figure 8 (a). 
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7. Steady pressure solution 
The examples of the foregoing section are steady but were computed from the non- 

steady pressure solution (3.6). This section shows how to transform the non-steady 
pressure solution into explicitly steady solutions for comparison with past theory. We 
resolve the pressure into volume and force terms, 

P = PY+PF, (7.1) 
because the two terms merit somewhat different discussions. 

A source moving steadily along the x'-axis is a function of the composite variable X' 
defined by (6.1). Pressure around a steady source is likewise a function of a composite 
variable 

X = x + U t ,  (7.2) 
together with the coordinates y ,  z transverse to the direction of travel. When variables 
X and X' are included in (3.5) and (3.6), the pressures due to volume and body force 
take the forms 

(7.3) 

where 

The first member of (7.4) comes from the pressure solution (3.5) with the z-derivative 
outside the integral, while the second member comes from (3.6) with the derivative 
inside. Primes on the area and force distributions indicate differentiations with respect 
to their argument. The integrals may seem to retain a dependence on x, but that is not 
so. Only the difference (x-x') appears in the integrands, and the difference could be 
used as a dummy variable of integration. 

To recover past results for steady sonic booms, we have only to substitute X' for x' 
as the variable of integration (7.3) and (7.4). The two variables are related by definition 
(3.3) of proper time, which may be written in the forms 

R = [(x - x ' )~  + r2]1/2 and r = ( y 2  + z2)'j2. (7.5) 

x-X' = x-x'+ U(t-t') 

=x-x'+MR. (7.6) 

Figure 9 illustrates the relation between X' and x' for the case of supersonic flight. 
The latter can be solved for (x-x') as a function of (X-X'). 

X' has a maximum, 

where 

The maximum is negative where X lies ahead of the Mach cone whose apex is the nose 
of the aircraft. There are area and lift distributions are zero for all x', and the pressure 
perturbation is zero. Otherwise, each value of X' corresponds to two values of x', and 
contributions from both must be included in the transformed integral. 

X' < X -  Br, (7.7) 

B = (W- 1)1'2. (7.8) 

The Jacobian of the transformation proves to be 

(7.9) 
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FIGURE 9. Relationship of the alternative integration variables X' and x' 

(7.10) 

The Jacobian (7.9) applies to each of the two values of x' at a single X' ,  so a term of 
an integral over x' produces two terms in the integral over X' .  

To compare our results with earlier work, we need to assume that the volume and 
force distributions and the derivative of the volume distribution are zero ahead of the 
aircraft and at its nose: 

Y ( X ' ) = O ,  Y ' ( X ' ) = O ,  F(X')=O for X ' < O .  (7.11) 

Transformation of (7.3) is simple, 

dX' Y"(X') -, 
2Kh 

X - B r  

(7.12) 

and reproduces the known solution for pressure due to volume displacement around 
a body in steady supersonic flight. The integral can be found in various references (e.g. 
Whitham 1974) but is most commonly seen in an asymptotic form valid far from the 
flight path. 

Transformation of the first member of (7.4) is also simple, 

(7.13) 

but the result is not usually seen with the derivative outside the integral. 
Straightforward differentiation fails, moreover, because the integrand is singular at the 
upper limit. A transformation of variables removes the singularity : 

X' = X-Brcosht, (7.14) 

and the subsequent differentiation produces a formula that can be compared with the 
theory of lifting slender bodies in steady supersonic flight (Tsien 1938): 

F ' ( X -  Br cosh 6) cosh 6 dt .  (7.15) 
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We recover a formula with the same structure as (7.12) by transforming back to the 

(7.16) 
variable X': 

Tsien's paper concerns flow around slender bodies of revolution, so we must use (2.18) 
to relate the distributions of body force 9 and lift 2. In steady flight, the lift 
distribution satisfies the formula 

dX' X - B r  
F ' ( X ' )  ( X -  X ' )  -. 

PF = PIa 27tA 

d Y  2 = pa U'sina-, 
dX (7.17) 

where a is angle of attack. Tsien presents a formula for potential rather than pressure, 
but the two are related by an integral of the steady Euler equation, 

(7.18) 

Our solution (7.15) for pressure due to lift agrees with Tsien's solution (4) for potential 
together with (2.18), (7.17), and (7.1Q-f 

When the second member of (7.4) is transformed into an integral over X' ,  a 
cumbersome formula results : 

(7.19) 
X - B r  W ( X -  IF) F ' ( X )  [(W + 1) ( X -  X')2 - B'r'] 9(X') 

[(X-  IF)2 + r']' + 
Solutions (7.16) and (7.19) can be shown to be equivalent by proving that 

(7.20) 
W ( X -  X )  ( X -  X ' )  (W + I)  ( X -  X')' - B2r2 

[(x- 1 ~ 1 2  + ,212 A [ (X-  X)' + r2] A -T} = 

and integrating (7.19) by parts. 
The solution (7.16) looks much simpler than (7.19), so why bother with (7.19) at all? 

The answer is that the two terms of (7.19) represent distinct components of the pressure 
field, and the distinction is worth taking into account. The first term is a propagating 
acoustic wave, the N-wave of sonic boom fame. The second terms falls away too fast 
to project acoustic power. It is bounded by the Mach cone but otherwise behaves like 
a near field. The second term alone contributes to the pressure integral (5.19) and 
transfers the weight of the aircraft to the ground. 

Although it is solely responsible for weight transfer, the second term of (7.19) is 
much smaller than the first near the Mach cone. An asymptotic analysis of (7.16) could 
easily miss the phenomenon of weight transfer, though it is a rigorous consequence 
of the linear acoustics equations, as well as the nonlinear Euler equations. Separate 
asymptotic analyses of the two terms of (7.19) illuminate the influence of lift on the 
N-wave and the transfer of weight to the ground. 

8. Steady lift and drag 
The second term of (7.19) is easy to evaluate far from the flight path. F(X) is non- 

zero only from 0 to L, regardless of the upper limit X-Br .  As r becomes large, X' 
becomes negligible in the factors multiplying F(X') everywhere that F(X') is non-zero. 

t There is a small difference in that the sign on the right of Tsien's equation ( 5 )  needs to be 
changed, as does the sign on the right of (7). Ap in (6) must be interpreted as the pressure difference 
between the lower and upper surfaces of the body, rather than 'the difference between the pressure 
at the surface of the body and the undisturbed flow'. Otherwise the relation between pressure and 
potential in (6) differs by a factor of 2, as does the domain of angular integration. 
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FIGURE 10. Ground pressure behind the Mach cone at various lateral distances 
from the flight path. 

The second term can be integrated to yield an asymptotic pressure formula 
proportional to total lift L,  

(8.1) 
h[ (W + 1) P - B"r'] L 

'.F 2 n ( P  + r2)2 (P - B2r2)l/" 
valid behind the Mach cone where X > Br. Equation (8.1) is singular at X = Br, but 
the singularity is integrable. The integral over a horizontal plane below the aircraft is 
L / 2 ,  and ground reflection doubles the integral to the full lift of the aircraft. Equation 
(8.1) is the analogue of the famous asymptotic formula for the ground pressure of a 
low-speed aircraft (Prandtl & Tietjens 1934, pp. 186-188). Of course (8.1) exhibits no 
hint of the N-wave to be found by evaluating the first term of (7.19) far from the flight 
path. 

Equation (8.1) is hard to plot because of the singularity at the Mach cone, but figure 
10 shows exact values of the same pressure term for our aircraft with sinusoidal 
fuselage radius and lift distributions flying at Mach 2 and an altitude of 10000 ft. The 
figure shows ground pressures at several lateral locations to indicate the extent of the 
pressure footprint. Not shown are the much larger sonic boom pressures near the Mach 
cone. 

Our concept of power-equivalent wave drag may seem exotic, but it reduces to the 
classical definition of wave drag when the flow is steady. With the substitution of (7. l), 
the x-component of the acoustic momentum equation (2.5) takes the form 

(8.2) 
when no body force is directed along the x-axis. We conclude that the term in brackets 
is zero, and the drag formula (5.12) becomes a surface integral of momentum flux: 

a(po uu +p)/ax = 0, 

D = -po uvdS. (8.3) fi 
Equation (8.3), together with asymptotic formulae for the longitudinal and radial 
velocity components, reproduces classical results for wave drag of slender bodies in 
supersonic flight (von Karman & Moore 1932). 
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9. Periodic sources 
The rest of this paper concerns periodic moving sources of the sort that might be 

used to control sonic booms. Of course any non-steady sources aboard supersonic 
transports would face formidable constraints. We cannot seriously contemplate non- 
steady fuselage shape changes, but perhaps leading edges with ‘ smart skins’ could 
periodically alter the longitudinal lift distribution. The total lift and centre of lift could 
remain constant, but the lift distribution could ‘slosh’ in and out from the middle of 
the aircraft to the nose and tail. Periodic manoeuvres without shape changes are 
unattractive but theoretically possible. Without altering its flight path, an aircraft 
could ‘surge’ periodically in speed. Both ‘slosh’ and ‘surge’ are examples of periodic 
moving sources. 

Important information about active sonic boom control can be obtained from a 
general definition of periodic moving sources, without recourse to specific examples. 
The definition proves to be curiously subtle. In the context of slender-body theory, any 
source is a function of the proper variables x’, t’. A less obvious variable is the phase 
7 of the clock that times the periodic control measures aboard the aircraft. Any 
conclusions about active sonic boom control should be independent of the phase of the 
aircraft clock. Put another way, the conclusions should not depend on the location x 
of a listener under the flight path. 

We thus assume that a periodic moving source is a function q of three variables (x’, 
t’, r )  including the phase of the control clock. ‘Moving’ means that x’ and t’ combine 
into a single variable so that 

(9-1) q(x’, t’, r )  = Ax’ + Ut’, t’ - 7). 

‘Periodic’ means that q does not change when the phase increases by a time equal to 
the period T of the control system: 

q(x’, t’, 7+ T )  = q(x’, t’, 7). (9.2) 
Equations (9.1) and (9.2) fully define a periodic moving source. 

The source has a phase average 

Q(x’, t’, 7) = +rT q(x’, t’, T’) dr’ (9.3) 

The phase average appears to be a function of the three variables ( X I ,  t’, r), but we can 
easily show from (9.1k(9.3) that 

Thus the phase average is a function of one variable only, 

Q(x’, t’, T )  = Q(x’ + Ut’), (9.5) 
and has the same form as a steady moving source. Phase averaging smears the source 
distribution along a direction parallel to the boundaries of the zone of sources. 

Phase averaging commutes with the spatial integrals of solution (3.6) for the pressure 
perturbation. Thus the phase-average pressure perturbation is the same as a pressure 
perturbation from the phase-average source, and the phase-averaged source is the same 
as a steady moving source. The phase-averaged sonic boom is the same as the sonic boom 
of a steady aircraft whose source distributions are phase averages of sources under active 
control. 
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FIWRF 1 I Zone of Sources thith periodic surge Surge stretches the 7one from the aircraft length 
/ t o  come larger dimension 1 

Can active control have any effect on the average sonic boom? The answer may be 
no for control methods like ?loch but clearly is yes for manoeuvres like surge. Figure 
1 1  shows hoR surge alters the extent of the zone of sources, stretching the zone from 
the aircraft length I ,  to a greater length A ,  the sum of aircraft length plus twice the 
amplitude of surge. The phase-average theorem (9.6) still applies, but the phase- 
averaged source is an aircraft of length A rather than L.  

10. Periodic slosh 
Our first example of a periodic source is ‘slosh’, a longitudinal flow of lift back and 

forth from the middle of the aircraft to the nose and tail. An aircraft with three lifting 
surfaces could implement slosh by oscillating control surfaces at the three trailing 
edges. with the canard arid tail synchronized and the wing 180” out of phase. 
Alternativelq, an elongated delta or quarter-sine wing could have piezoelectric leading 
edges capable of bending into S shapes, thereby altering the longitudinal distribution 
of angle of attack. 

We retain the sinusoidal fiixelape radius of (6.6) hut add a three-halves sine wave to 
the lift distribution (6 .7) :  

(10.1) 

The lift distribution (10.1) i s  always symmetrical around the middle of the aircraft, so 
the centre of lift never changes. The factors ( I  --/I) and 3/j are selected so the total lift 
is constant as well. / j  determines whether the lift distribution is peaked in the middle 
or peaked toward the nose and tail, The formula 

-= Po -t-/jI sin(2nfi’ t 4) (10.2) 

specifies a mean allocation o f  lift to the three-halves sine term as well as a periodic 
allocation of frequency farid phase Q in radians The mean allocation is proportional 
to PI, and the periodic allocaiion to /I,. 
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FIGURE 12. Longitudinal lift distribution under extreme slosh for eight evenly 

spaced phases; j3 ,  = 0, j3, = 0.25. 
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FIGURE 13. Source distribution under extreme slosh at a frequency of 0.5 Hz. 

Figure 12 displays lift distributions for 

p,, = 0, p, = 0.25. (10.3) 

The aircraft parameters are those of (4.11) and (6.5), while the proper time t' is 
zero in all cases. Lift plots for eight evenly spaced phases are shown: # = 0", +5", 
90", . . . . Three of the plots overlap others. The amount of slosh is seen to be extreme. 
The lift at the middle of the aircraft periodically falls to zero and becomes double the 
mean value. We should not expect to attain greater lift variability in practice. 
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FIGURE 14. (a) Sonic boom from a sloshed lift distribution. The light line depicts the sonic boom for 
steady lift. (b) Sonic booms from four phases of the slosh cycle, together with their average shown 
as a darker curve. The average is the same as the boom from the steady source of (a). 

Figure 13 shows the source distribution that results when the slosh is imposed at a 
frequencyfof 0.5 Hz, with a phase 4 of zero. Extreme slosh has dramatic effects on the 
source distribution, as may be seen by comparing grey levels of figures 13 and 8(b). 
Convoluted source regions have replaced the clean arcs of the steady source example. 

Figures 14(a) and 14(b) display sonic booms arising from periodic slosh. The darker 
curve in figure 14(a) is the boom at zero phase, while the lighter curve is the boom of 
the steady source example, reproduced from figure 8(a). The lighter curves of figure 
14(b) are booms at four phases of the slosh cycle: # = O", 90", 180" and 270". The 
darker curve is the average of the four and is the same as the boom from the steady 
source, in conformity with the phase-average theorem of 39. We conclude from the 
plots that slosh alters the boom profoundly but does not reduce its pressure level. 

11. Periodic surge 
Our second example of a periodic source is 'surge', a periodic acceleration of the 

aircraft along its flight path. In principle, engine thrust variations could implement 
surge. A deliberately excited phugoid oscillation could do so also, with the complication 
of small periodic changes of altitude. We recommend neither mode of implementation 
for commercial supersonic transports ! 

The half-sine fuselage and quarter-sine wing of (6.6) and (6.7) suffice without change 
to demonstrate surge phenomenology. What must change is the definition of the 
composite proper coordinate A". In place of (6.1), we require that 

X' = x' + Ut' -;(A - L) [ 1 - cos (2nj-t' + $)I, (11.1) 

where f is surge frequency and q5 is an arbitrary phase. Surge is a sinusoidal motion 
superposed on the mean translatory motion of the aircraft. The amplitude of sinusoidal 
motion is ( A  - L)/2,  where A is the length of the zone of sources shown in figure 11. 

Figure 15 shows the source distribution derived from (6.6), (6.7), and (11.1) for 
a frequency of 0.5 Hz and zero phase. The aircraft parameters and flight conditions 
are from (4.11) and (6.5) as usual, while the amplitude of the surface is assumed to 
be 400 ft, the same as the length of the aircraft. The length of the zone of sources is 
1200 ft, three times longer than the aircraft. 

The sources in figure 15 are no longer compact within the nominal zone of sources. 
They snake back and forth between the boundaries of the zone, creating a stretched 
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FIGURE 15. Source distribution for surge at a frequency of 0.5 Hz. 
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FIGURE 16. (a) Sonic boom from an aircraft subject to extreme periodic surge. The lighter curve 
depicts the boom without surge. (b) Sonic booms from four phases of the surge cycle. 

and attenuated virtual source of sound. Sonic booms from the surging aircraft are 
similarly stretched and attenuated, as shown in figures 16(a) and 16(b). The sonic boom 
of figure 8 (a) has collapsed into waves of low amplitude resembling broadband noise. 
The waves seem oddly complicated in view of their origin from a simple aircraft 
undergoing a simple sinusoidal surge. 

Unfortunately the assumed surge amplitude is anything but practical. Position 
oscillates with an amplitude of 400 ft and frequency of 0.5 Hz. The amplitude of speed 
oscillations is 1257 ft s-l, so the speed varies from 743 ft s-l to 3257 ft s-l in the course 
of a cycle. Acceleration oscillations have an amplitude of 3948 ft s-’, about 123 times 
the acceleration due to gravity. 

The speed and acceleration amplitudes diminish as the frequency falls, but so 
does the efficacy of surge as a means of reducing sonic boom intensity. At a frequency 
of 0.1 Hz, the amplitude of acceleration is ‘only’ 4.9 times gravity, but the sonic 
boom is hardly changed from the case of steady flight. Surge with more moderate 
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accelerations shifts the boom back and forth without chopping it to pieces, like the 
fragmented booms of figures 16(a) and 16(6). The phase-averaged boom is still 
weak, but the weakness reflects only boom displacements, not intensity reductions 
that a listener would notice. 

12. Conclusions 
Non-steady acoustics and slender-body theory serve well as bases for a linear theory 

of sonic booms. The non-steady solution for sonic boom pressure is easy to understand 
and compute, a little easier than the equivalent steady solution, even when the sources 
are steady. Lift evolves naturally in the non-steady formulation and gives rise to 
separate terms that account for sonic booms and for transfer of aircraft weight to the 
ground. 

A major conclusion of non-steady theory is that the source of a sonic boom is much 
larger than the aircraft. For an aircraft flying at an altitude of 50000 ft, the source 
region at any instant is typically 8000 ft long. The sonic boom emanates from an 
extensive region of sky, a kind of synthetic aperture acoustic antenna. By exploiting the 
dimension of time, an aircraft can alter the source distribution along the synthetic 
aperture antenna and subject the sonic boom to active control. 

A theorem limits the options for effective active control, at least within the realm of 
linear theory. The theorem states that the phase-averaged sonic boom is the same as 
the sonic boom of a steady aircraft whose source distributions are phase averages of 
sources under active control. The only way the aircraft can reduce the phase-average 
sonic boom is by manoeuvring to enlarge the source region beyond the bounds defined 
by flight at constant velocity. 

We assume that fuselage shape must be constant and consider two means of active 
sonic boom control called ‘slosh’ and ‘surge’. Slosh is periodic contraction and 
expansion of the longitudinal lift distribution, with total lift and centre of lift held 
constant. Surge is a periodic aircraft manoeuvre, not a change of shape. The aircraft 
speed surges faster and slower along an unchanged flight path. 

Slosh of sufficient magnitude has a dramatic effect on sonic booms, but the phase- 
average theorem precludes any average change of boom strength. If boom amplitude 
decreases at one point below the flight path, it must increase at another. Surge, by 
contrast, can reduce sonic boom amplitudes everywhere below the flight path and 
transform the boom into seemingly random noise. The accelerations needed to produce 
that happy outcome seem much too large to be practical, but the fact that surge can 
reduce sonic booms to rumbles is surprising and intriguing. 

We conclude that active sonic boom abatement is possible but not necessarily 
practical. There could be some means beyond slosh and surge that can reduce sonic 
booms actively without imposing impractical burdens on the aircraft. Nonlinear 
propagation could also have a bearing on the ultimate utility of active sonic boom 
control. A boom heard on the ground comes from a wide swathe of sky. Some points 
of origin are strong with active control, and others are weak. The fact that the boom 
coalesces from strong and weak sources may influence the formation and propagation 
of shock waves. 

Another nonlinearity may be important: one involving sources rather than 
propagation. An aircraft vortex wake is a nonlinear source of pressure perturbations 
superposed on the pressure perturbations from the fuselage and wing. Vortex boom 
phenomena would be easy to include in non-steady sonic boom theory and could have 
some bearing on steady booms as well. 
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